Kernel Fisher Discriminant Analysis in Full Eigenspace

نویسندگان

  • Bappaditya Mandal
  • Xudong Jiang
  • Alex ChiChung Kot
چکیده

This work proposes a method which enables us to perform kernel Fisher discriminant analysis in the whole eigenspace for face recognition. It employs the ratio of eigenvalues to decompose the entire kernel feature space into two subspaces: a reliable subspace spanned mainly by the facial variation and an unreliable subspace due to finite number of training samples. Eigenvectors are then scaled using a suitable weighting function. This weighting function circumvents undue scaling of projection vectors corresponding to the undependable small and zero eigenvalues. Eigenfeatures are only extracted after the discriminant evaluation in the whole kernel feature space. These efforts facilitate a discriminative and stable low-dimensional feature representation of the face image. Experimental results comparing other popular kernel subspace methods on FERET, ORL and GT databases show that our approach consistently outperforms others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Quasiconformal Kernel Fisher Discriminant Analysis via Weighted Maximum Margin Criterion

Kernel Fisher discriminant analysis (KFD) is an effective method to extract nonlinear discriminant features of input data using the kernel trick. However, conventional KFD algorithms endure the kernel selection problem as well as the singular problem. In order to overcome these limitations, a novel nonlinear feature extraction method called adaptive quasiconformal kernel Fisher discriminant ana...

متن کامل

Error bounds for Kernel Fisher Linear Discriminant in Gaussian Hilbert space

We give a non-trivial, non-asymptotic upper bound on the classification error of the popular Kernel Fisher Linear Discriminant classifier under the assumption that the kernelinduced space is a Gaussian Hilbert space.

متن کامل

Rapid and Brief Communication A reformative kernel Fisher discriminant analysis

A reformative kernel Fisher discriminant method is proposed, which is directly derived from the naive kernel Fisher discriminant analysis with superiority in classi1cation e2ciency. In the novel method only a part of training patterns, called “signi1cant nodes”, are necessary to be adopted in classifying one test pattern. A recursive algorithm for selecting “signi1cant nodes”, which is the key ...

متن کامل

Robust Kernel Fisher Discriminant Analysis

Kernel methods have become standard tools for solving classification and regression problems in statistics. An example of a kernel based classification method is Kernel Fisher discriminant analysis (KFDA), a kernel based extension of linear discriminant analysis (LDA), which was proposed by Mika et al. (1999). As in the case of LDA, the classification performance of KFDA deteriorates in the pre...

متن کامل

A new kernel Fisher discriminant algorithm with application to face recognition

Kernel-based methods have been of wide concern in the ,eld of machine learning and neurocomputing. In this paper, a new Kernel Fisher discriminant analysis (KFD) algorithm, called complete KFD (CKFD), is developed. CKFD has two advantages over the existing KFD algorithms. First, its implementation is divided into two phases, i.e., Kernel principal component analysis (KPCA) plus Fisher linear di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007